Calculations for Mastic / Sealant

$a=$ Hole Diameter in mm
$b=$ Depth of Sealant in mm / wet film thickness for spray material (See recommendations)
$\mathrm{c}=$ Pipe or Bunched Cables diameter in mm
$\mathrm{d}=$ Annular space in mm (See recommendations)
I = Length of square opening / joint
$w=$ Width of square opening / joint
$\mathrm{h}=$ Cartridge or spray bucket size in ml
$n=$ Number of holes
$\mathrm{e}=$ Area of hole in $\mathrm{mm}^{2}=\pi(\mathrm{a} \div 2)^{2}$
$f=$ Area of pipe in $\mathrm{mm}^{2}=\pi(a \div 2)^{2}$
$g=$ Amount of mastic needed per hole in $m \mid=((e-f) \times b) \div 1000$

Round Holes	Square Hole	Linear Joints
No. of cartridges needed $=n \times\left(\frac{9}{h}\right)$	No. of cartridges needed $=n \times\left(\frac{9}{h}\right)$	No. of cartridges / buckets $=\left(\frac{9}{h}\right)$
Area of hole $\mathrm{e}=\pi \times(\mathrm{a} \div 2)^{2} \mathrm{~mm}^{2}$	Area of hole $\mathrm{e}=1 \times \mathrm{mmm}$	Area of Joint $=0=1 \times \mathrm{w} \quad \mathrm{mm}^{2}$
Area of pipe $\mathrm{f}=\pi \times(\mathrm{c} \div 2)^{2} \mathrm{~mm}^{2}$	Area of pipe $\mathrm{f}=\pi \times(\mathrm{c} \div 2)^{2} \mathrm{~mm}{ }^{2}$	Mastic Volume $=($ e-f $\|\times b\rangle \div 1000 \mathrm{ml}$
Mastic Volume $=\mathrm{g}=(($ e-f $) \times$ b) $\div 1000 \mathrm{ml}$	Mastic Volume $=g=(($ e-f $\mid \times b) \div 1000 \mathrm{ml}$	= 9
		Example for Mastic/Sealant:
Example:	Example:	$\mathrm{w}=20 \mathrm{~mm}$
$\mathrm{a}=90 \mathrm{~mm}$	$1=90 \mathrm{~mm}$	$1=30 \mathrm{~meters}=30000 \mathrm{~mm}$
$\mathrm{b}=40 \mathrm{~mm}$	$w=100 \mathrm{~mm}$	$\mathrm{b}=10 \mathrm{~mm}$
$\mathrm{c}=50 \mathrm{~mm}$	$\mathrm{b}=40 \mathrm{~mm}$	$\mathrm{h}=310 \mathrm{ml}$
$\mathrm{h}=310 \mathrm{ml}$	$\mathrm{c}=50 \mathrm{ml}$	$\mathrm{e}=20 \times 30000=60000 \mathrm{~mm}^{2}$
$n=20$	$\mathrm{h}=310 \mathrm{ml}$	$g=(60000 \times 10) \div 1000=6000 \mathrm{ml}$
	$\mathrm{n}=20$ l $=00 \times 100=0000 \mathrm{~mm}^{2}$	$\begin{aligned} \text { No. of catridges }=\left(\begin{array}{l} \left.\frac{6000}{310}\right) \\ =19.4 \text { cartridges } \end{array}\right. \end{aligned}$
$\mathrm{e}=3.14 \times 45^{2}=6361.73 \mathrm{~mm}^{2}$	$\mathrm{e}=90 \times 100=9000 \mathrm{~mm}^{2}$	Example of joint Spray:
$\mathrm{f}=3.14 \times 25^{2}=1963.50 \mathrm{~mm}^{2}$	$f=3.14 \times 25^{2}=1963.50 \mathrm{~mm}^{2}$	$w=100 \mathrm{~mm}, \mathrm{wl}=125 \mathrm{~mm}$ (with overspray)
$g=($ (6361.73-1963.50) $\times 40) \div 1000$	$g=(\|9000-1963.50\| x 40) \div 1000$	$1=300$ meters $=300000 \mathrm{~mm}$
$=175.92 \mathrm{ml}$	$=281.46 \mathrm{ml}$	$\mathrm{b}=1.5 \mathrm{~mm}$
$\begin{aligned} \text { No. of cartridges } & =20 \times\left(\frac{175.92}{310}\right) \\ & =11.55 \text { cartridges } \end{aligned}$	No. of cartridges $=20 \times\left(\frac{281.46}{31}\right)$	$\mathrm{h}=19 \text { liters = } 19000 \mathrm{ml}$
	$=18.1 \text { cartidges }$	$\mathrm{e}=125 \times 300000=37500000 \mathrm{~mm} 2$ $\mathrm{g}=(37500000 \times 1.5) \div 1000=56250 \mathrm{ml}$
		$\text { No. of buckets }=\left(\frac{56250}{19000}\right)=2.96 \text { buckets }$

Calculations for FireStop Block FBB

$\mathrm{a}=$ block length $=230 \mathrm{~mm}=0.23 \mathrm{~m}$
I = length of opening

Area to be covered/filled by blocks

No. of blocks required

Example :
$1=500 \mathrm{~mm}=0.5 \mathrm{~m} \quad \mathrm{w}=500 \mathrm{~mm}=0.5 \mathrm{~m} \quad \mathrm{c}=30 \%$
Area to be covered/filled by blocks $=0.5 \times 0.5 \times(1-0.3)=0.175 m^{2}$
Fire rating up to 60 minutes
No. of blocks required
$=\frac{0.175}{(0.23 \times 0.06)}$
(0.23 x 0.06)
12.68
$\mathrm{t}=$ block thickness $=60 \mathrm{~mm}=0.06 \mathrm{~m}$
$c=\%$ penetrant Area

Fire rating up to 120 minutes

$$
\frac{A}{b \times t}
$$

Calculations for Compound

$$
\begin{aligned}
& \text { I = length of the opening } \\
& b=\text { width of the opening } \\
& \begin{aligned}
& d=\text { depth as per required fire rating } \\
& C=\text { Penetrant Area or cross sectional area of services } \\
& Y=\text { coverage } / \text { yield of } 1 \text { bag in Liters } \\
& \text { Volume of Compound Required }=\text { Volume of opening - Volume of services } \\
&=[(\mid x b x d)-(\text { Cxd })] \\
&=[(\mid x b x d)-(C x d)] \times 1000 \quad \mathrm{~m}^{3} \\
&=V \\
&=\underline{V}
\end{aligned}
\end{aligned}
$$

Example :

= $1000 \mathrm{~mm}=1 \mathrm{~m}$
$\mathrm{b}=500 \mathrm{~mm}=0.5 \mathrm{~m}$
$d=100 \mathrm{~mm}=0.1 \mathrm{~m}$
$C=20 \%$ of opening $=1 \times b \times 20 \%=1 \times 0.5 \times 0.2=0.1$
$Y=24$ liters per 22 KG bag
Volume of Compound Required $=[(1 \times 0.5 \times 0.1)-(0.1 \times 0.1)] \times 1000$ liters
$\mathrm{V}=40$ liters
Numbers of bags required $=\quad \frac{40}{24}$

$$
=1.67 \text { bags }
$$

Calculations for Pillows FIP

Estimation of large and medium size pillows in walls and floors openings of size up to 1 sq. meter.

Width mm		Length mm											
	Size \rightarrow	Large	Medium										
	Seal type	100		300		500		700		900		1000	
200	Wall	3	5	7	13	12	22	17	31	21	39	24	47
	Floor	2	3	4	7	6	12	9	17	11	22	12	27
400	Wall	5	9	14	26	24	44	33	61	42	78	47	95
	Floor	3	5	7	15	12	24	17	34	22	43	24	52
600	Wall	7	13	21	39	35	65	49	91	63	117	70	143
	Floor	4	7	11	22	18	36	25	51	33	65	36	79
800	Wall	9	18	28	52	47	87	66	122	84	157	94	192
	Floor	5	10	15	29	24	48	34	67	33	87	48	107
1000	Wall	10	22	35	65	59	109	82	152	105	196	117	217
	Floor	6	12	18	36	30	60	42	84	54	108	60	120

Calculations for Fire Barrier Foam - FBS

Material use as reference value for 40\% degree of seal use - number of cartridges for seal thickness 200mm and 100mm for 90 minutes and 30 minutes fire rating respectively

* The above calculations do not consider wastage of material. Please consider an appropriate factor.

